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ABSTRACT. An accurate estimation of glacier volume is essential for e�ective water resource
management and sea-level rise projections, however, traditional methods for assessing glacier
thickness are costly and labor-intensive. This study presents a novel approach to estimating
glacier thickness utilizing neural networks trained on thickness data from the Glacier Thickness
Database (GlaThiDa) and glacier a�ributes, such as area or slope, from the Randolph Glacier
Inventory (RGI). A regression analysis is conducted on a subset of GlaThiDa data, which is then
used to infer thicknesses for glaciers in the RGI dataset. Challenges in matching GlaThiDa
thickness data to RGI a�ributes are addressed, employing distance and area thresholds to en-
sure the matched GlaThiDa thickness is representative of RGI a�ributes. Furthermore, this
study provides a comprehensive comparison with existing global estimates. Notably, this study
has lower estimates of volume for shelf and marine-terminating glaciers due to a sparsity of
available training data. These findings suggest the neural network e�ectively models a world
without ice shelves and their bu�ressing e�ect on ice flow. This departure from previous meth-
ods and estimates emphasizes the importance of improved observations of glacier thickness
data, particularly in marine environments.

INTRODUCTION

Glacier volume information is crucial for water resource man-
agement (Deng and others, 2019; Nolin and others, 2010;
Bliss and others, 2014; Frans and others, 2018) and projec-
tion of sea level rise (Meier and others, 2007; Zemp and oth-
ers, 2019). While glacier surface features such as area can be
measured remotely, thickness information remains elusive
as in situ surveys are expensive and labor intensive. Early
work by Bahr and others (1997) derived an area-volume scal-
ing relationship which was built upon in subsequent studies,
however previous a�empts to estimate global glacier volume
have been hindered by incomplete datasets (Dyurgerov and
others, 2005; Radić and Hock, 2010; Huss and Farino�i, 2012;
Grinsted, 2013). While the area-volume scaling relationship
derived by Bahr and others (1997) is intended to apply to a
population of similar glaciers, these previous studies explore
samplings of glaciers such as specific mountain ranges to
find new scaling factors for specific ranges of glaciers (Hock
and others, 2023).

Two recent studies (Farino�i and others, 2019; Millan and
others, 2022) apply di�erent physics-based models on a global
scale to estimate a global glacier volume for glaciers con-
tained in the Randolph Glacier Inventory (RGI) (RGI Con-
sortium, 2017) and calibrate their models with data using

the Glacier Thickness Database (GlaThiDa) (GlaThiDa Con-
sortium, 2020). This study uses mean scale thicknesses data
from GlaThiDa and surface features from RGI to train re-
gression models using shallow neural networks to estimate
a mean glacier thickness, and then compares results of these
neural networks to recent global estimates by Farino�i and
others (2019); Millan and others (2022)

Workflow consists of carrying out a regression analysis
on the glaciers contained in the much smaller GlaThiDa data
set (n “ 500) and then using a regression model to infer
the thicknesses of the glaciers contained in the much larger
RGI data set (n “ 216, 501). Since the GlaThiDa and RGI
data sets are not perfectly coincident in time, the datasets
are first carefully coregistered. Statistical methods are then
described including the use of neural networks from glacier
thickness regression and estimation of global glacier volume.

The main result of this study is an estimate of global
glacier volume as well as an accounting of glacier volume
uncertainty resulting from the statistical model and mea-
sured data. This entirely data-driven and physics-free ap-
proach to global glacier ice volume achieves statistically sim-
ilar volume distributions to previous e�orts that invoked –to
varying degrees– physics-based models (Farino�i and oth-
ers, 2019; Millan and others, 2022). Adequately complex neu-
ral networks can be thought of as universal function approx-
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imators (Hornik and others, 1989). In that context, these re-
sults suggest that the main limitation of achieving be�er es-
timates of glacier thickness is not improvement of models,
but rather improving underlying data sets.

BACKGROUND

E�orts to estimate glacier volume go back decades. Early at-
tempts rely on generalized power-law scaling relationships
to obtain volume from glacier surface area using 144 glaciers
excluding any ice caps and ice sheets (Bahr and others, 1997).
Subsequent studies employed these scaling relationships to
di�erent datasets with varying results. Dyurgerov and oth-
ers (2005) monitored the worlds glaciers by estimating mass
balance from surface area and included ice caps without ref-
erencing any scaling values used. Radić and Hock (2010) up-
scaled an incomplete glacier inventory using methods from
Bahr and Meier (2000) to estimate bias in scaling relation-
ships and establish uncertainty estimations. Grinsted (2013)
combined three glacier datasets into a global database and
applied area-volume scaling methods. These studies use re-
lated techniques, however, they report varied scaling expo-
nents.

Farino�i and others (2019) employs a consensus of five
di�erent physics-based models including mass balance, con-
stitutive laws, and flow-line modeling. Millan and others
(2022) uses regionally tuned velocity models using high res-
olution satellite imagery to invert flow velocities for glacier
thickness. Farino�i and others (2019); Millan and others (2022)
are able to tune their models for estimating ice caps and thus
do not exclude them as in previous studies, however, the dif-
ference in global volume between the two recent global es-
timates still arises from a choice to include specific glaciers
(Hock and others, 2023).

Data

This project uses mean thickness and mean thickness un-
certainty data from GlaThiDa 3.1.0. GlaThiDa contains three
separate datasets which describe di�erent scales of measure-
ment. This study uses the “T” dataset which contains mean-
scale glacier thicknesses. Glacier features come from the
Randolph Glacier Inventory v. 6. No discrimination is made
regarding glacier form or termination type for training or es-
timation.

METHODS

Coregistration
Glacier thickness data from GlaThiDa are combined with
surface features from RGI in a process referred to as coreg-
istration. RGI glaciers are matched with GlaThiDa thick-
nesses using latitude and longitude coordinates contained
in both datasets as the only overlapping field between them.
These glaciers are matched by finding the minimum dis-
tance in RGI to each GlaThiDa Thickness. This process is
simple in principle, but some challenges present themselves.
First, variable resolution of glacier centroid coordinates in
GlaThiDa creates ambiguity in the coregistration process.
This location resolution ranges over five orders of magni-
tude from approximately 1 m to 11 km. As a result of this
reduced accuracy multiple GlaThiDa measurements may be
associated with a single RGI glacier. In this case, any re-
peated RGI glaciers are dropped from the final training data.
It is also possible for multiple RGI glaciers to be associated
with a single GlaThiDa thickness with equal distance be-
tween glacier centroids, in which case the GlaThiDa entry is
dropped from training. In case multiple RGI glaciers may be
associated with a single GlaThiDa glacier, the minimum dis-
tance is taken to be a match. In order to reduce uncertainty
in these matches with nonzero distance between glacier cen-

troids, the average radius of the glacier, r “
b

ARGI

π , is com-
pared to the minimum distance between glacier centroids, x ,
to find a relative distance to area ratio D “ x

r . This distance
to area ratio can then be compared to a desirable threshold
of uncertainty,T , to exclude erroneous data from training.

The second challenge in dataset coregistration is that the
GlaThiDa and RGI data sets are not coincident in time. Sig-
nificant glacier change may have occurred in the seasons,
years, or decades between the GlaThiDa thickness measure-
ment and the RGI data acquisition and labeled thicknesses
may be unreliable for a glacier that has changed too much.
A�er matching by centroid location (as described above) a
percent di�erence in size between entries in RGI and GlaThiDa
is calculated as,

∆Ai “
ARGI
i
´ AGlaThiDa

i

AGlaThiDa
i

. (1)

Throughout this manuscript, the subscript i refers to glaciers
in the GlaThiDa catalog. This percent di�erence represents
changes in glacier surface area since thickness surveys were
carried out and estimates reliability of the available thick-
ness data. ∆Ai can also be compared to a threshold of un-
certainty to dismiss any glaciers that may have unreliable
labeled thickness for their measured size.
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Four thresholds are tested (T “ 999, 0.25, 0.5, 0.75) to
find the ideal balance between sample size and reliability
for training. Estimates made by models trained and vali-
dated with data coregistered using each threshold are shown
against the survey GlaThiDa thickness in Fig 1. T “ 999
represents all data regardless of area or location mismatch.
This model does not perform well and estimates appear to
hover around a mean value. T “ 0.25 has very poor perfor-
mance suggesting insu�icient data for training. T “ 0.50
and T “ 0.75 estimates show improved performance. T “
0.75 is selected as the best fit to the data for further analysis.

Neural Networks

A neural network regression model uses interconnected neu-
rons to predict outcomes based on input data. This study
uses such models to predict mean glacier thickness from
mean scale features available in RGI. Inputs to the model
include glacier centroid latitude and longitude, area, slope,
elevation, and maximum length. The neural network passes
these inputs to interconnected neurons which optimize a re-
gression function to fit mean thickness labels from GlaThiDa
to surface features from RGI. It iteratively adjusts the predic-
tion rules to find the best fit, then stops training and saves
the optimal model weights as a final model.

With the goal of simplifying parameters of the model,
shallow neural networks (SNNs) with two layers of neurons
are utilized. The network architecture consists of 6 neurons
in the first layer and 2 neurons in the second layer surround-
ing a 10% dropout normalization layer to help prevent over-
fi�ing (Srivastava and others, 2014). Learning rate and vali-
dation split are held fixed at 0.01 and 0.2 respectively. Model
residuals for the i th GlaThiDa glacier are calculated as,

ri “ ĥi ´ hi (2)

and fractional residual,

R i “
ĥi ´ hi
hi

(3)

where hi is the observed (GlaThiDa-reported) glacier thick-
ness, and ĥi is the corresponding estimated thickness. Model
weights are calculated by minimizing mean absolute error
(MAE),

řNGlaThida
i“1 |ri |{NGlaThida, and mean squared error (MSE)

řNGlaThida
i“1 r 2i {NGlaThida,whereNGlaThida is the number of glaciers

in the GlaThiDa catalog. MAE tells us how the model per-
forms in estimating the average glacier, while MSE is more
sensitive to larger errors which allows for discrimination against
outliers.

Cross Validation
A requirement for neural networks is division of data into
training and testing subsets, which introduces the question
of which data to sample for training or testing of the re-
gression model. Results from a single model vary widely de-
pending on which data are sampled to train or validate the
model. Rather than optimizing a select set of training and
validation data, a single glacier is used to validate a model
trained on the remaining coregistered data. Repeating this
leave-one-out method for each glacier obtains a distribution
of prediction rules, each validated on a unique glacier. The
average performance of all models is thus an estimate of a
model trained on the full coregistered dataset.

Glacier volume and volume uncertainty
calculation
For each of the N “ 216501 glaciers in the RGI catalog
indexed by k , glacier volume is calculated as the product
V̂k “ Ĥk Âk (no summation on the index k ) of the estimated
thickness Ĥk and area Âk . The estimated area Âk consists
of the RGI-reported area Ak , which is modeled as a normal
distribution,

Âk „ N rAk ,Var pAk qs . (4)

Uncertainties due to mapping errors are quantified follow-
ing the result of Pfe�er and others (2014), who estimated
area uncertainty with a simple model of fi�ing a curve to
fractional uncertainties between multiple data sources for
RGI. Their approximation yields the relationship

Var pAk q « c1α
`

A
p1
k

˘2
, (5)

where Ak is the reported glacier surface area, α “ 0.039 is
the estimated fractional error of a 1 km2 glacier, p1 “ 0.70,
and c1 “ 3 is a correction factor.

The estimated thickness Ĥk consists of the thickness dis-
tribution estimated from the SNN, Hk which is modeled as
a normal distribution with mean and variance,

Ĥk „ N rHk ,Var pHk qs . (6)

The leave one out cross validation of the k th RGI glacier is de-
notedHk j , indicating that the thickness of RGI glacier k was
estimated based on a regression using the entire GlaThiDa
database except for glacier j . The expected value of the k th

glacier thickness is calculated as,

Hk “
1

N j

N j
ÿ

j“1

Hk j , (7)

where N j “ 273 is the number of cross validation iterations.
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Fig. 1. Testing di�erent coregistration thresholds. GlaThiDa survey thickness compared to this study’s estimated thickness on a log
scale with a one-to-one fit line shown in red

Thickness uncertainty, Var pHk q, is the combination of
variances of three sources of uncertainty which are modeled
as random variables: reliability of data, Var

`

εM
k

˘

; uncer-
tainty due to limited thickness data, Var

`

εH
k

˘

; and model
uncertainty, Var

`

εR
k

˘

.

Var pHk q “ Var
´

εMk

¯

` Var
´

εHk

¯

` Var
`

εRk
˘

. (8)

First, reliability of training data is assessed by approxi-
mating the measurement uncertainty of data used for train-
ing, Var

`

εM
˘

. This uncertainty is approximated by fi�ing
the mean thickness uncertainty provided in GlaThiDa to the
corresponding mean thickness measurement. This model
yields the relationship:

b

Var
`

εM
i

˘

« c2h
p2
i
, (9)

with constants c2 « 0.07 and p2 « 0.8. This model is then
used to approximate the e�ect of measurement uncertainty,
Var

`

εM
k

˘

, using Hk as the dependent variable.
Uncertainty due to limited thickness data, Var

`

εH
k

˘

, is
quantified using leave one out cross validation. The variance
over the cross validation iterations is given by,

Var
´

εHk

¯

« Varj
`

Hk j

˘

. (10)

Here the notation Varp¨q is used to denote the variance of a
random variable and the notation Varj p¨q to denote the sta-
tistical operation of taking the variance of an array of values.

Finally the neural network regression model uncertainty,
Var

`

εR
k

˘

, is approximated by analyzing residuals. A statisti-
cal model of residuals is calculated by binning similar thick-
ness estimates hi into B ă n i bins and for each bin the stan-
dard deviation of pooled residuals rj B is calculated as,

b

Var
`

εRB
˘

«

g

f

f

e

1

nBn j

nB
ÿ

B

n j
ÿ

j

`

rj B ´ r̄B
˘2
. (11)

Due to limited thickness data, some bins must be expanded
such that at least 3 glaciers are included to calculate Var

`

εRB
˘

.
These standard deviations are then fit as a dependent vari-
able to binned thickness measurement hB in log-log space
which yields the relationship,

b

Var
`

εRB
˘

« c3h
p3
B , (12)

with constants c3 “ 0.04 and p3 “ 0.6. This statistical
model is then used to estimate Var

`

εR
k

˘

using Hk as the de-
pendent variable. This approach is similar to the one em-
ployed by Farino�i and others (2019) (i.e., their “1.5σi {h̄i ”),
with the additional generalization Farino�i and others (2019)
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essentially assumed a power law exponent of unity, whereas
this study fits this power law exponent from the data. The
covariance terms between uncertainties are calculated to be
at least two orders of magnitude smaller than the other terms
and so they are neglected going forward.

With these distributions in hand, glacier volume vari-
ance can be calculated on a glacier-by-glacier basis, for all
glaciers in the RGI catalog. For the time being, it is assumed
that Ĥk and Âk are uncorrelated. In that case, the variance
of the k th glacier is calculated as,

σ2k “ VarpĤk Âk q

“ Var
`

Ĥk
˘

Var
`

Âk
˘

` A2kVar
`

Ĥk
˘

` H 2
kVar

`

Âk
˘

(13)

The sum global volume is considered a random variable
with a sampling distribution defined by estimated parame-
ters,

Ŝ „ N
˜

Nk
ÿ

k

V̂k ,

Nk
ÿ

k

σ2k

¸

. (14)

The sum global volume is approximated as,

S «

Nk
ÿ

k“1

V̂k ˘ Z
˚

α{2

g

f

f

e

Nk
ÿ

k

σ2
k
. (15)

RESULTS

The calculation in Equation 15 results in 135.7˘2.4ˆ103km3

of global glacier ice for all glaciers contained in RGI. More
than two-thirds of all global ice volume is estimated to be
contained in just 377 glaciers, « 0.2% of the RGI catalog.
Fig 2 compares estimated volumes with Farino�i and oth-
ers (2019) estimates, and summary statistics are reported
for di�erent volumes in Fig 2 representing over or under fit-
ting of previous estimates. Also visible in Fig 2 are a hand-
ful of glaciers in Jan Mayen estimated by Farino�i and oth-
ers (2019) to be on the order of centimeters thick, which is
taken to be a model artifact. Table 1 shows a further com-
parison of estimated volumes by region with Farino�i and
others (2019) and Millan and others (2022). Some regions of
RGI were combined in Millan and others (2022) and thus are
not directly compared.

DISCUSSION

Model Performance
To assess the performance of SNNs, residuals with GlaThiDa
are calculated using equations 2 and 3. Estimates are also

compared to estimates by Farino�i and others (2019) us-
ing their available data. Figure 3 shows residuals of both
this study and Farino�i and others (2019). Residuals of both
studies show a trend of under-fi�ing larger thickness and
over-fi�ing smaller thickness. The lowest residuals in both
studies are for thicknesses approximately 50 m and resid-
uals are approximately normally distributed with features.
The mean residual of this study is ´3˘ 28 compared to the
mean residual from Farino�i and others (2019) data, 3˘ 33.
A t-test of the two distributions of residuals determines they
are statistically similar with a p-value of 0.06 with a confi-
dence level of 95%. Fig 3 shows the di�erence in mean resid-
ual comes from the largest thicknesses; this study underes-
timates these larger thicknesses while Farino�i and others
(2019) overestimates these thicknesses to a similar degree.

Thickness and Volume Uncertainty
Uncertainty distributions for glacier thickness and volume
are shown in figures 4 and 5. Thickness uncertainty for the
smallest estimated thicknesses can vary between 35% to 55%,
and percent uncertainty decreases with increasing estimated
thickness to roughly 10% for the largest estimated thick-
nesses. The majority of estimated thicknesses fall between
0.03 and 0.06 km and about 20% to 25% uncertainty. Volume
uncertainty increases for the smallest glaciers to a range of
60% to 70% and falls to around 12% to 18% for the largest vol-
umes. Most of the estimated volumes in this study fall be-
tween 0.001 to 50 km3 with uncertainties as high as 50% to as
low as 20%. An important distinction between this study and
recent global estimates is the accounting of uncertainties.
Figure 5 depicts the global sum contributions of propagated
uncertainties. 5A shows that cross-validation variance con-
tributes less overall to the global uncertainty than the statis-
tical models used to estimate measurement and model un-
certainty. 5B and 5C show the same values scaled by area
uncertainty and reported RGI area, respectively. In the cal-
culation for global uncertainty, it is the measurement uncer-
tainty that becomes the most important, followed by uncer-
tainty due to the availability of data as measured by cross-
validation. These findings suggest that to improve glacier
thickness estimates it is the data that needs to be improved
before improving modeling e�orts.

Consistency with Previous Estimates
Figure 2 shows a direct comparison with volume estimates
from Farino�i and others (2019). The majority of estimated
volumes less than 0.1km3 are higher than Farino�i and oth-
ers (2019), while volumes greater than 0.1km3 tend to be
lower than Farino�i and others (2019). While these results
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Fig. 2. A. Histogram of volumes from Farino�i et al. 2019. B.Histogram of volumes from this study. C.Direct global comparison between
volumes estimated by this study and that of Farino�i et al. 2019 on a log scale with one-to-one perfect fit in orange. Brighter colors
represent density of estimates.
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Table 1. Table of RGI regional volume comparisons between Farino�i and others (2019), Millan and others (2022), and this study. Millan
and others (2022) combined Alaska and Western Canada (RGI 1, 2 respectively) into a single region, as well as high-mountain Asia (RGI
regions 13,14,15) into a single region making it not possible to compare these regions.
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Table 2. Glacier volumes 1ˆ 10´5 to 1ˆ 104 km3. These glacier volume estimates sum to 135.7ˆ 103 km3 and the entirety of glaciers
contained in RGI. Volume di�erence and percent volume di�erence represent the di�erence between this study’s estimate and Farino�i
and others (2019).

Area (km2)
Thickness

Estimate (m)
Volume

Di�erence (km3)

Percent
Volume

Di�erence

mean 3.446 40 ´0.2 25.6
median 0.252 38 0.0 34.1
STD 51.081 18 5.9 38.7
min 0.010 7 ´661.6 ´750.0
max 7537.579 893 1019.5 100.0
count 216 501 216 501 216 501 216 501

Table 3. Glacier volumes 1ˆ10´5 to 1ˆ10´1 km3. These glacier volume estimates sum to 2.9ˆ103 km3 and represent 88.4% of glacier
population and 2.1% of global volume. Glaciers of this volume tend to have higher estimated volume than Farino�i and others (2019).
Volume di�erence and percent volume di�erence represent the di�erence between this study’s estimate and Farino�i and others (2019).

Area (km2)
Thickness

Estimate (m)
Volume

Di�erence (km3)

Percent
Volume

Di�erence

mean 0.390 36 0.0 32.5
median 0.201 36 0.0 38.5
STD 0.470 11 0.0 32.1
min 0.010 7 ´0.6 ´750.0
max 8.399 138 0.1 100.0
count 191 362 191 362 191 362 191 362

Table 4. Glacier volumes 1 ˆ 10´1 to 50 km3. These glacier volume estimates sum to 35.4 ˆ 103 km3 and represent 11.4% of glacier
population and 26.1% of global volume. Glaciers of this volume tend to have lower estimated volume than Farino�i and others (2019).
Volume di�erence and percent volume di�erence represent the di�erence between this study’s estimate and Farino�i and others (2019).

Area (km2)
Thickness

Estimate (m)
Volume

Di�erence (km3)

Percent
Volume

Di�erence

mean 14.552 63 ´0.8 ´27.6
median 5.008 57 0.0 ´19.7
STD 31.298 23 4.0 43.1
min 0.833 15 ´225.4 ´688.2
max 774.565 311 13.8 100.0
count 24 761 24 761 24 761 24 761
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Table 5. Glacier volumes 50 to 1 ˆ 103 km3. These glacier volume estimates sum to 61.8 ˆ 103 km3 and represent 0.2% of glacier
population and 45.6% of global volume. Glaciers of this volume tend to have lower estimated volume than Farino�i and others (2019).
Volume di�erence and percent volume di�erence represent the di�erence between this study’s estimate and Farino�i and others (2019).

Area (km2)
Thickness

Estimate (m)
Volume

Di�erence (km3)

Percent
Volume

Di�erence

mean 672.042 238 ´54.8 ´41.1
median 496.930 225 ´39.7 ´36.1
STD 474.811 63 88.5 48.7
min 218.943 81 ´661.6 ´350.6
max 3266.694 436 156.1 52.1
count 358 358 358 358

Table 6. Glacier volumes 1ˆ 103 to 1ˆ 104 km3. These glacier volume estimates sum to 35.5ˆ 103 km3 and represent 0.009% of glacier
population and 26.2% of global volume. Glaciers of this volume tend to have similar estimated volume with Farino�i and others (2019).
Volume di�erence and percent volume di�erence represent the di�erence between this study’s estimate and Farino�i and others (2019).

Area (km2)
Thickness

Estimate (m)
Volume

Di�erence (km3)

Percent
Volume

Di�erence

mean 3713.457 517 53.1 1.5
median 3362.656 468 ´0.1 ´1.1
STD 1328.140 133 484.0 24.0
min 2219.510 306 ´624.9 ´37.6
max 7537.579 893 1019.5 46.0
count 19 19 19 19
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Fig. 3. Plot of residuals of both this study (blue) and Farino�i et al. 2019 (orange) against corresponding survey thickness found in
GlaThiDa on a log-log scale. Residuals are calculated as estimated thickness minus thickness measurement found in GlaThiDa.

Fig. 4. A. Percent uncertainty for each mean glacier thickness estimate. Brighter colors represent density of estimates. B. Percent
uncertainty for each estimated glacier volume. Color scheme is same as A.
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Fig. 5. Pie charts depicting uncertainty components. A. Components of global thickness uncertainty, each one the variance of a source

of uncertainty modeled as a random variable. Var
´

εM
¯

represents uncertainty concerning the reliability of training data. Var
´

εH
¯

measures the variance of the leave one out cross validation method and approximates uncertainty due to limited training data. Var
`

εR
˘

is
an approximation of model uncertainty and is calculated using binned residuals. B. Components of Var pAqVar pH q term of global volume
uncertainty. C. Components of A2Var pH q term of global volume uncertainty.
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show that both this study and Farino�i and others (2019)
achieve similar results when compared to GlaThiDa mea-
surements, examination of residudals show that Farino�i and
others (2019) overestimates larger glacier thicknesses to a
similar degree that this study underestimates them. The es-
timate of this study for the global sum of glacier volume is
within the global uncertainty bounds of Farino�i and others
(2019); Millan and others (2022), though regional estimates
vary widely (Figure 1). Specifically, estimates from this study
fall below the uncertainty bounds for Farino�i and others
(2019); Millan and others (2022) for RGI regions 6 (Iceland),
8 (Scandinavia), 9 (Russian Arctic), and 19 (Antarctic and
Subantarctic). This study estimates higher volumes than
Farino�i and others (2019); Millan and others (2022) for RGI
region 5 (Greenland Periphery). Regions 9 and 19 have the
highest sum and mean glaciated area, and they are the re-
gions with the highest discrepancy. Greenland on the other
hand, has about 10% of the mean glaciated area and similar
sum glaciated area to 9 and 19. Further, the mean disagree-
ment within the Greenland Periphery is near 0 while the sum
discrepancy is actually one of the most negative. This sug-
gests the SNNs are estimating very high volumes for a few
glaciers in the Greenland Periphery. Meanwhile, regions 9
and 19 contain several glaciers that are shelf-terminating
according to RGI. This shelf-termination can bu�ress the
glacier flow and allow thickness distributions to be thicker
than a standard alpine glacier that is allowed to flow freely.
While this bu�ressing e�ect is o�en studied in the context
of ice sheets (Dupont and Alley, 2005; Sun and others, 2020;
Pegler, 2018; Pritchard and others, 2012), the results from the
SNNs suggest similar e�ects on non-ice-sheet glaciers.

This study estimates a mean thickness for each glacier
contained in RGI, however, previous studies exclude partic-
ular glaciers for various reasons (Hock and others, 2023).
Comparing glacier volumes estimated by this study to those
from Farino�i and others (2019) reduces the global volume
estimate to 121.85 ˆ 103km3, approximately 28 ˆ 103km3

less than Farino�i and others (2019). Additionally, Millan
and others (2022) excludes Antarctic glaciers supported by
the ice shelf. By excluding these glaciers from RGI, the sum
volume estimate becomes 111.399ˆ103km3, approximately
29 ˆ 103km3 less than Millan and others (2022). Estimated
glacier thicknesses are comparable to the mean of the esti-
mates provided by Farino�i and others (2019), and find that
nearly 70% of the di�erence between the two studies can be
accounted for by 1000 of the 215519 glaciers available from
Farino�i and others (2019). Of the 100 most negative vol-
ume di�erences, 42 are ice caps in various regions and 40
are coded in RGI as shelf supported glaciers in Antarctica.

One further discrepancy between this global estimate

and the previous estimates of Farino�i and others (2019)
and Millan and others (2022) is the size of confidence in-
tervals for the sum volume. Farino�i and others (2019) de-
scribe a method of weighting five glacier thickness mod-
els based on deviations from calibration data, resulting in
an uncertainty that reflects disagreement between consen-
sus models. Millan and others (2022) produce maps of dis-
tributed thickness and thickness uncertainty while citing an
average uncertainty across regions, which represents pertur-
bations to a single model. These sources of variability are
considerably di�erent from what has been quantified in this
study, and lack of discussion of previous uncertainty esti-
mates makes a direct comparison extremely di�icult.

Marine-Terminating Glaciers and
Shelf-Supported Ice Caps
Considerable interest surrounds the stability of marine ice
sheets (Bassis and others, 2024) due to the possibility of rapid
sea level rise associated with the marine ice sheet instability
(Schoof, 2007; Katz and Worster, 2010; Pegler, 2018). The re-
cent Antarctic BU�ressing Model Intercomparison Project
(ABUMIP) has specifically sought to describe the response
of the Antarctic Ice Sheet to the removal of the supporting
ice shelves (Sun and others, 2020) following ice shelf col-
lapse (Scambos and others, 2004; Rignot and others, 2004;
Banwell and others, 2013). Here, we find a negative glacier
volume bias for marine icecaps and glaciers that feed into
floating ice shelves. This bias occurs because the coregis-
tered training dataset (GlaThiDa glacier-level “T” data) is
non-representative; it does not contain any ice shelf-supported
glaciers. For this reason, we interpret the SNNs as having
been trained to represent glacier thickness without ice shelves.
We therefore o�er the novel interpretation that these glacier
thickness estimates reflect an estimate for the thickness as
if ice shelves have been removed. In this way, this statistical
approach is essentially a data-driven analogy to the ABU-
MIP project.

Although the demise of ice shelves has been studied widely
in the context of the Antarctic Ice Sheet, this process has
been less well quantified in the context of non-ice sheet glaciers
and smaller marine icecaps. The discrepancy between our
ice volume estimate and that of Farino�i and others (2019)
is„ 29ˆ103 km3, equivalent to about 7.1 cm of sea level rise
(SLR). The assessed contribution from non-ice sheet glaciers
to sea level rise ranges from 12 to 29 cm (low warming sce-
nario) to 32 cm in a high warming scenario (Table 9.11, Fox-
Kemper, 2021). The estimated 7.1 cm SLR contribution from
the loss of ice shelf bu�ressing and other ocean interactions
to non-ice sheet glaciers therefore constitutes between 22%
and 59% of the glacier contribution to SLR.
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CONCLUSIONS

This study estimates a global ice volume using a purely data-
driven approach eschewing all physics. The resulting global
ice volume estimate is lower than previously published stud-
ies. The cause of the discrepancy stems from a lack of avail-
able and reliable training data; few marine-influenced ice-
caps and no glaciers with ice shelves are in the coregistered
dataset. One conclusion to be drawn from this result is that
a more representative dataset including such glaciers would
benefit future estimate of global ice volume. These results
also suggest the novel interpretation that these lower es-
timate of ice volume gives insights into a possible future
where marine icecaps and glaciers supported by ice shelves
have experienced ice shelf collapse and a�ained a new study
state with lower total grounded ice volume.
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